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Jiří Koutný
Doctoral Degree Programme (3), FIT BUT

E-mail: ikoutny@fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: Syntax analysis of generatively stronger than context-free grammars is usually a major
problem because of problematic construction of practically usable parsing methods. The paper intro-
duces a generatively stronger grammar based on the restrictions placed upon the paths in the derivation
trees of context-free grammars and discusses polynomial time parsing methods possibilities for it.
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1 INTRODUCTION AND MOTIVATION

A syntax analysis of some family of languages has been always considered basically from two points
of view. Firstly, theoretical viewpoint is concerned with finding whether the given string over some
alphabet belongs to given language. Secondly, from practical viewpoint, it is essential that the mem-
bership is decidable in polynomial time depending on the length of the string. For many well-known
language families (i.e. regular, linear, or context-free family of languages), the polynomial parsing
methods has been introduced and their implementations are commonly used in practice. However, for
the generatively stronger grammars (typically context-sensitive grammars), the parsing methods are
much more complex. In essence, for this reason, new generative models are introduced and investi-
gated and the natural request placed on them is the polynomial parsability. Typically, they are based
on some variant of the restrictions placed on some of the well-known model (see [3]).

One of such a restricted model is based on tree-controlled grammars (see [1]) which places several
types of the restrictions upon the derivation trees of context-free grammars (see [4], [7], [8], and [9]).
Especially the research of [7] introduces the restriction placed on just one path in the derivation trees
and also briefly discusses the syntax analysis of such a model. In essence, this paper generalizes the
model of [7] to n-paths restriction, then it recalls that in this case there are several language families
depending on the pumping lemma for linear languages applied on the control language (see [6]), and
primarily discusses the idea of parsing methods working in polynomial time for one of the families.

2 PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with the graph theory, the basics of asymptotic comple-
xity, and the theory of formal languages, including the theory of regulated rewriting. In this section,
we introduce the terminology and the definitions needed in the sequel.

For an alphabet V , V ∗ denotes the letter monoid (generated by V under the operation concatenation),
ε is the unit of V ∗, and V+ = V ∗−{ε}. For string x ∈ V ∗, |x| denotes the length of x. Every subset
L⊆V ∗ is a language over V .

A context-free grammar is a quadruple G = (V,T,P,S) where, as usual, V is a total alphabet, T ⊆ V
is a terminal alphabet, P is a finite set of rules of the form A→ x where A ∈ V − T , x ∈ V ∗, and
S ∈V −T is the starting symbol. A grammar G is linear, if and only if all its rules have at most one



nonterminal on the right-hand side. A derivation step⇒ in G and the relation⇒∗ are defined in the
standard manner. The language of context-free grammar is defined as L(G) = {x ∈ T ∗| S⇒∗G x}. The
family of linear, context-free languages is denoted by LIN, CF, respectively.

Let t be a derivation tree of x ∈ T ∗ in G = (V,T,P,S). A path of t is any sequence of the nodes of
t with the first node equals to the root of t, last node equals to a leaf of t, and there is an edge in
t between each two consecutive nodes of the sequence. Let word(s) denote the string obtained by
concatenating all symbols of the sequence of nodes in a derivation tree.

A tree-controlled grammar, TC grammar for short, is a pair (G,R) where G = (V,T,P,S) is a context-
free grammar, and R is a control language over V . There are several types of languages generated by
TC grammars, (see [6]), however, due to space restrictions, we present just one of them.

Let (G,R) be a TC grammar. The language that (G,R) generates under the n-path control by R,
n≥ 0, is denoted by n−pathL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈n−pathL(G,R) if and only if there is a derivation tree t of x in G such that
there is set Ct of n different paths of t that are divided in a common node of t and for each p ∈ Ct ,
word(p) ∈ R. Set n-path-TC = {n−pathL(G,R)| (G,R) is a TC grammar}.

Since regular-restricted paths in the derivation trees of context-free grammars do not increase the
generative capacity of context-free grammars (see [5] and Prop. 2 in [7]), we consider TC grammars
with context-free component G and linear component R.

Let (G,R) be a TC grammar that generates the language under n-path restriction by R. Clearly, for a
derivation tree t of z ∈ L(G), there is some mCt ≥ 1 that denotes a number of common nodes for all n
controlled paths. Since R ∈ LIN, the pumping lemma for linear languages holds for R. Depending on
the value of mCt in relation to the pumping lemma for R, five types of languages in n-path-TC can be
introduced (see [6]). However, hereafter we deal with just one of them.

Let n−pathL(G,R) be a language of a TC grammar (G,R) with G = (V,T,P,S), for some n≥ 0. Then
Ct is a set of n controlled paths in a derivation tree of a sentence in n−pathL(G,R). Let ps ∈Ct be the
shortest controlled path and word(ps) be divided into five parts uvwxy according the pumping lemma
for linear languages. If for every z ∈n−pathL(G,R) with derivation tree t in G and for every p ∈ Ct ,
|uv| < mCt ≤ |uvw|, then n−pathL(G,R) is III−n−pathL(G,R). Set III-n-path-TC = {L| there is TC
grammar (G,R) such that L =III−n−path L(G,R)}. It is well-known that CF ⊆ III-n-path-TC even
for n = 1 (see [6] and [7]).

3 SYNTAX ANALYSIS IDEA OF III-n-path-TC

Question 1. Can x ∈III−n−pathL(G,R) for TC grammar (G,R) be decided in O(|x|k) with k ∈ N,
n≥ 0?

Idea 1. Let III−n−pathL(G,R) be a language, for some n ≥ 0, of a TC grammar (G,R) where G =
(V,T,P,S). Assume, G is unambiguous. It is well-known that we can decide if x ∈ L(G) in O(|x|2),
thus, we distinguish two cases, (1) x /∈ L(G), and (2) x ∈ L(G).

(1) Clearly, if x /∈ L(G), then x /∈III−n−pathL(G,R).

(2) If x ∈ L(G), then, since G is unambiguous, we can construct unique derivation tree t of
x ∈ L(G) in O(|x|2). Since each path of t ends in a leaf, t contains |x| paths. Clearly, since
G is unambiguous, the height of each t is bounded by some l ∈ N. Thus, the length of each
path p of t and therefore also |word(p)| are bounded by l. Since R ∈ LIN and |word(p)| ≤ l,
for each p ∈ Ct , it is well-known that we can decide if word(p) ∈ L(R) in polynomial time.
Since R ∈ LIN, it is straightforward task to determine where is the middle part related to the



pumping lemma for LIN. If for at least n paths p1, p2, . . . , pn of derivation tree of x in G holds
(a) word(pi) ∈ R, for i ∈ 1,2, . . . ,n, (b) p1, p2, . . . , pn are divided in common node, (c) which is
placed in the middle parts of p1, p2, . . . , pn, then x ∈III−n−pathL(G,R).

Answer 1. Yes, x ∈III−n−pathL(G,R) for TC grammar (G,R) can be decided in O(|x|k) with k ∈ N
under assumption that G is unambiguous, n≥ 0.

The weakness of Idea 1 above is the assumption that a context-free grammar is unambiguous. How-
ever, it is well-known that the question if a grammar is or is not ambiguous is undecidable, since this
problem can be reduced to Post correspondence problem which is undecidable.

It is also well-known that for some ambiguous context-free grammars, there exist equivalent context-
free grammar which is unambiguous. The ambiguity of a context-free grammar can be restricted
basically by removing the chain rules. Without any loss of generality, assume that a context-free
grammar contains only usable rules—that is, only those rules, which can be used during the deriva-
tion. Clearly, if G = (V,T,P,S) is a context-free grammar with r : A→ B ∈ P, for some A,B ∈V −T ,
then G is potentially ambiguous.

Obviously, since chain rules generate nothing, they can be removed from a context-free grammar G
without affecting L(G). However, removing the chain rules from G in a TC grammar (G,R) affect the
paths in the derivation trees of x∈ L(G). Thus, the equivalence III−n−pathL(G,R) =III−n−pathL(G′,R),
where G′ is obtained by removing the chain rules from G, does not hold, however the equivalence
L(G) = L(G′) holds. Therefore, the second fundamental question is:

Question 2. In a TC grammar (G,R), can we obtain G′ by removing the chain rules from G and
modify R to R′ such that III−n−pathL(G,R) =III−n−pathL(G′,R′), n≥ 0?

Idea 2. Let III−n−pathL(G,R) be a language, for some n ≥ 0, of a TC grammar (G,R) where G =
(V,T,P,S). Let G′ be a context-free grammar obtained from G by removing chain rules. Therefore,
G′ can be created by well-known algorithm in polynomial time. We get G′ = (V,T,P′,S) such that
for all x ∈ L(G′), there is no derivation in G′ of the form B⇒∗ A, for some A,B ∈V −T .

The paths in the derivation trees of G′ are described by the strings of the form N∗T . Basically, we
need to read such a strings and remove such symbols A ∈ N which corresponds to the application of
B→ A ∈ P in G. This is done by gsm mapping M (see [3] for the definition) such that M reads the
strings s of the form N∗T and nondeterministicaly removes or lets unchanged each symbol A ∈ N
with B→ A ∈ P and BA is substring of s. This way, we get M(R) such that M(R) 6= R, however,
III−n−pathL(G,R) =III−n−pathL(G′,M(R)). Since LIN is closed under gsm mappings (see [2]), also
M(R) ∈ LIN.

Answer 2. Yes, a TC grammar (G,R) can be transformed into TC grammar (G′,R′), where G′ does
not contain chain rules and III−n−pathL(G,R) =III−n−pathL(G′,R′), n≥ 0.

Clearly, the application of Idea 2 above does not guarantee that in the resulting (G′,R′), G′ is unam-
biguous because of the chain rules are not the only cause of the ambiguity. Consider, however, any
x ∈III−n−pathL(G′,R′). Obviously, there is a derivation tree t of x in G′. Since there is no chain rules
in G′ and for each x ∈ L(G′), |x| is finite, the height of t is at most equal to log|x|/log2. Thus, there
is at most m, for some m ∈ N, derivation trees of x in G′—that is, G′ is m-ambiguous. The following
question arises:

Question 3. Can x ∈III−n−pathL(G,R) for TC grammar (G,R) be decided in O(|x|k), with k ∈ N,
n≥ 0, and G is m-ambiguous?

Idea 3. Let III−n−pathL(G,R) be a language, for some n ≥ 0, of a TC grammar (G,R). We can
straightforwardly adjust Idea 1 above as follows. The decision if x ∈ L(G) is done exactly in the same



way as in Idea 1 above. If x ∈ L(G), then we can construct at most m derivation trees of x ∈ L(G) in
O(m.|x|2). Now, the idea is also the same as in Idea 1, the only modification is in the last step, which
can be reformulated as: If for at least n paths p1, p2, . . . , pn of at least one derivation tree of x holds (a)
word(pi) ∈ R, for i ∈ 1,2, . . . ,n, (b) p1, p2, . . . , pn are divided in common node, (c) which is placed in
the middle parts of p1, p2, . . . , pn, then x ∈III−n−pathL(G,R).

Answer 3. Yes, x ∈III−n−pathL(G,R) for TC grammar (G,R) can be decided in O(|x|k) with k ∈ N,
n≥ 0, under assumption that G is m-ambiguous.

However, as follows from Idea 1 and Idea 3 above, the parsing is done basically in two phases—(a)
construction of derivation tree t of x in G, (b) checking that at least n paths divided in common node
of at least one t are described by R. From the practical viewpoint, the situation may occur in which
we already know during the phase (a) above that currently constructed derivation tree cannot contain
the required number of paths described by the strings from R—informally, we do not have to wait
with starting the phase (b) until the phase (a) is completely done. Therefore, another question arises:

Question 4. Is it possible that the above-mentioned phases of syntax analysis run concurrently?

Idea 4. Let III−n−pathL(G,R) be a language, for some n ≥ 0, of a TC grammar (G,R) where G =
(V,T,P,S) is m-ambiguous. We can adjust Idea 3 as follows. Without any loss of generality, we
assume that R is generated by linear grammar GR = (VR,V,PR,SR).

Consider labeled derivation tree with the set of labels {0,1}. The semantic is as follows. Let e be an
edge between two nodes of derivation tree t in G. Then, label 0 means that for path p that contains e,
word(p) /∈ R. Label 1 means that path p that contains e can potentially be described by R.

Consider that for the decision if x ∈ L(G), we use a top-down parsing method to construct derivation
tree t of x in G—that is, started from S, we try to construct derivation tree according to the rules of G
such that the frontier of t is equal to x. Let us suppose that a rule p : A→ A1A2 . . .An ∈ P is used in
the derivation X ⇒ Y in G and in addition, we need to determine the value of the labels for the edges
between A and each Ai, for i = 1,2, . . . ,n. Let t ′ be a derivation tree that corresponds to the derivation
S⇒∗ w1A1A2 . . .Anw2, for some w1,w2 ∈V ∗, in G. Essentially, t ′ is a subtree of t. Clearly, each path
of t ′ is the beginning part of at least one path in t.

Let t ′′ be a subtree of t ′ such that t ′′ contains just those nodes of t ′ which are connected by the edges
labeled by 1, or by the edges without label. If t ′′ contains less than n paths, then x /∈III−n−pathL(G,R).
If all the edges of t ′′ are labeled, we can proceed to next derivation step in G. If some of the edges
in t ′′ are not labeled, we need to compute the values of missing labels. Thus, for each path p′′ in t ′′,
we check whether GR can generate the string of the form word(p′′)w with w ∈ N∗T . Since R ∈ LIN,
each sentential form in GR is of the form w1Cw2, where w1,w2 ∈V ∗, C ∈VR−V .

For each path p′′ in t ′′, since |word(p′′)| is finite, we can check whether w1 = word(p′′) for at least
one of the possible derivations of the form w1Cw2 with |w1| = |word(p′′)| in GR. If there is w1 =
word(p′′), we add label 1 to the input edge of the last node of p′′. If w1 6=word(p′′) for all the possible
derivations, we add label 0 to the input edge of the last node of p′′. Notice that since R ∈ LIN, this
phase can also be optimized in such a way that we do the test whether w1 = word(p′′) symbol-by-
symbol during the generation of w1 in GR. The details of this optimization represents a straightforward
task which is left to the reader.

Now, we construct subtree t ′′′ of t ′′ such that t ′′′ contains only those nodes of t ′′ which are connected
by the edges labeled by 1 and we do the final check whether t ′′′ contains at least n paths. If t ′′′ do not
contain at least n paths, then x /∈III−n−pathL(G,R). If t ′′′ contains at least n paths and if t ′ contains at
least one leaf labeled by symbol of N, we proceed to next derivation step in G. If t ′′′ contains at least
n paths divided in the common node in the middle part in relation to the pumping lemma for R, and if
all the leafs of t ′ are labeled by the symbols of T , then x ∈III−n−pathL(G,R).



Answer 4. Yes, it is possible to check whether the paths of derivation tree t of context-free grammar
can potentially be described by given linear language already during the building of t.

Idea 4 deals in principle with top-down parsing method. Essentially the same idea is applicable also
on bottom-up parsing methods, however, due to the space restrictions, it is left to the reader. However,
from the ideas described above, one fundamental open question follows:

Open Question 1. Can x∈III−n−pathL(G,R) for TC grammar (G,R) be decided in O(|x|k) with k∈N,
n≥ 0, and G ambiguous?

4 CONCLUSION

We conclude the paper by stating that for L ∈ III-n-path-TC under assumption that L is generated
by TC grammar (G,R) in which G has bounded ambiguity (i.e. G is unambiguous or m-ambiguous),
there is parsing method working in polynomial time. This method can check whether or not the
paths of the derivation tree t of x ∈ L(G) belongs to control language R in the time of building of
t. However, the natural question that still remains unanswered is whether or not this is true also if
G is ambiguous. All these questions and answers play an important role when implementing syntax
analyzer for III-n-path-TC in which some typical non-context-free languages belong (see [6]).
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regulated grammars. In CLIN, pages 111–125, 2000.

[8] C. Martín-Vide and V. Mitrana. Further properties of path-controlled grammars. In Formal
Grammar / Mathematics of Language 2005, pages 219–230. Edimburgh, 2005.
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